The Fundamental Theorem of Algebra for Monosplines with Multiple Nodes

A. A. Zhensykbaey
Mathematics Department, Kazakh State Initersify, Alma-Ata 480121, USSR

Communicated by Allan Pinkuq
Received May 2, 1986; revised April 26, 1987

1

In this paper we find necessary and sufficient conditions for the existence of monosplines with multiple nodes having zeros at given points with given multiplicities. I. J. Schoenberg [1] proved the fundamental theorem of algebra for monosplines of minimal defect. Later the theorem was extendea to other sets of splines (see, for example, [2-4]). C. Micchelli [5] proved this theorem for monosplines with multiple nodes and simple zeros. Then R. B. Barrar and H. L. Loeb [6] extended it to the case where the sum of the maximal multiplicity of zeros and the defect of the monospline is less then its degree. We prove the theorem in the general case.

2

Let $M_{n m}^{r}$ be the set of monosplines of degree r with n nodes of odd multiplicities $m_{1}, \ldots, m_{n}\left(1 \leqslant m_{t} \leqslant r\right)$,

$$
M(x)=x^{r}-\sum_{i=1}^{n} \sum_{j=0}^{m_{1}-1} a_{i j}\left(x-x_{i}\right)_{+}^{r-1-j}+\sum_{k=0}^{\prime-1} b_{k} x^{k}
$$

where $u_{+}^{s}=0$ if $u \leqslant 0$ and $u_{+}^{s}=u^{s}$ if $u>0$, and the coefficients a_{u}, b_{k}, and the nodes $0<x_{1}<\cdots<x_{n}<1$ are arbitrary.

We define the multiplicity of a zero of the monospline $M \in M_{n m}^{r}$ in the following way,

$$
\begin{aligned}
k^{ \pm}(M, x) & = \begin{cases}r, & \text { if } M^{(i)}(x \pm 0)=0(i=0: r-1 ; \\
\min \left\{i: M^{(i)}(x \pm 0) \neq 0\right\}, & \text { otherwise; }\end{cases} \\
k_{0}(M, x) & =\max \left\{k^{-}(M, x) ; k^{+}(M, x)\right\} ; \\
k(M, 0) & =k^{+}(M, 0), \quad k(M .1)=k^{-}(M, 1) ;
\end{aligned}
$$

and for $x \in(0,1)$,

$$
k(M, x)= \begin{cases}2\left[k_{0}(M, x) / 2\right]+1, & \text { if } M \text { changes sign at the point } x \\ 2\left[\left(k_{0}(M, x)+1\right) / 2\right], & \text { otherwise }\end{cases}
$$

([a] is the integral part of a). The point x is called a zero of M if $k(M, x)>0$. The number $k(M, x)$ is called the multiplicity of the zero x. By $v(M)$ we denote the number of zeros of M on $[0,1]$:

$$
v(M)=\sum_{x} k(M, x) .
$$

For the number $v(M), M \in M_{n m}^{r}$, we have the following estimate (see, for example, [7, p. 331]):

$$
\begin{equation*}
v(M) \leqslant N+r, \quad N=\sum_{i=1}^{n}\left(m_{i}+1\right) \tag{1}
\end{equation*}
$$

Since $(1 / r) M^{\prime} \in M_{n m^{\prime}}^{r-1}, m^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right), m_{i}^{\prime}=\min \left(m_{i} ; r-1\right)$,

$$
v\left(M^{\prime}\right) \leqslant N+r-1
$$

If $v(M)=N+r$ and $M \in M_{n m}^{r} \cap C[0,1]$ then $v\left(M^{\prime}\right)=N+r-1$ and the derivative M^{\prime} has exactly one zero on each interval between neighbouring zeros of M. Thus, we have the next statement.

Lemma 1. Let $M \in M_{n m}^{r}, m_{i}<r(i=1: n), v(M)=N+r$, and let $0 \leqslant$ $t_{1}<\cdots<t_{k} \leqslant 1$ be distinct zeros of M. Then on each interval $\left(t_{i}, t_{i+1}\right)$ $(i=1: k-1)$ there is a unique extremal point τ_{i} of M,

$$
M\left(\tau_{i}\right)=\min _{t_{i}<x<t_{i+1}} M(x) \quad \text { or } \quad M\left(\tau_{i}\right)=\max _{t_{i}<x<t_{i+1}} M(x),
$$

and $M(x)$ is strongly monotone on $\left[0, t_{1}\right],\left[t_{k}, 1\right]$, and on $\left[\tau_{i-1}, \tau_{i}\right]$ if $k\left(M, t_{i}\right)$ is odd.

Lemma 2. If $M \in M_{n m}^{r}, v(M)=N+r$, and M has k zeros t_{1}, \ldots, t_{k} of multiplicities $\rho_{1}, \ldots, \rho_{k}, \sum_{i=1}^{k} \rho_{i}=N+r$, then there are indices $k_{1} \leqslant \cdots \leqslant k_{n}$ such that

$$
\begin{equation*}
\sum_{j=1}^{i}\left(m_{j}+1\right)-1 \leqslant \sum_{j=1}^{k_{1}} \rho_{j} \leqslant r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right) \quad(i=1: n) . \tag{2}
\end{equation*}
$$

Proof. Let the interval $\left[0, x_{i}\right)$ contain u_{i} points $t_{1}, \ldots, t_{u_{i}}\left(0 \leqslant u_{i} \leqslant k\right.$;
$t_{u_{t}+1} \geqslant x_{t}$). The restriction of M on $\left[0, x_{i}\right]$ coincides with some monospline from $M_{(i-1) \bar{m}}^{r}, \bar{m}=\left(m_{1}, \ldots, m_{i-1}\right)$. According to (1)

$$
\begin{align*}
\sum_{j=1}^{u_{i}} \rho_{j}+k^{-}\left(M, x_{i}\right) & \leqslant \sum_{j=1}^{i-1}\left(m_{j}+1\right)+r \\
& =r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right)-1 \tag{3}
\end{align*}
$$

On the other hand the interval $\left(x_{i}, 1\right]$ contains the points $t_{v_{i}}, \ldots, t_{k}, v_{i}=$ $u_{i}+2-\operatorname{sgn}\left(t_{u_{i}+1}-x_{i}\right)$. In view of (1)

$$
\sum_{j=v_{i}}^{k} \rho_{j}+k^{+}\left(M, x_{i}\right) \leqslant \sum_{j=i+1}^{n}\left(m_{j}+1\right)+r
$$

Since $v(M)=N+r$

$$
\sum_{j=1}^{u_{i}} \rho_{j}+\sum_{j=v_{t}}^{k} \rho_{j}+k\left(M, x_{i}\right)=N+r
$$

and the last inequality implies

$$
\begin{equation*}
\sum_{j=1}^{u_{i}} \rho_{j} \geqslant \sum_{j=1}^{i}\left(m_{j}+1\right)-k\left(M, x_{i}\right)+k^{+}\left(M, x_{i}\right) \tag{4}
\end{equation*}
$$

If $k_{0}\left(M, x_{i}\right)=k^{+}\left(M, x_{i}\right) \geqslant 0 \quad$ or $k\left(M, x_{i}\right)=0 \quad$ then $0 \leqslant k\left(M, x_{i}\right)-$ $k^{+}\left(M, x_{i}\right) \leqslant 1$. Define $k_{i}=u_{i}$ and inequality (2) follows from (3) and (4).

If $k_{0}\left(M, x_{i}\right)=k^{-}\left(M, x_{i}\right) \geqslant 0$ and $k\left(M, x_{i}\right)>0$ then $0 \leqslant k\left(M, x_{i}\right)-$ $k^{-}\left(M, x_{i}\right) \leqslant 1, v_{i}=u_{i}+2$. Define $k_{i}=u_{i}+1$. In view of (3)

$$
\begin{aligned}
\sum_{j=1}^{k_{1}} \rho_{j} & \leqslant r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right)-1+k\left(M, x_{i}\right)-k^{-}\left(M, x_{i}\right) \\
& \leqslant r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right)
\end{aligned}
$$

Inequality (4) implies

$$
\sum_{j=1}^{k_{i}} \rho_{j} \geqslant \sum_{j=1}^{i}\left(m_{j}+1\right)+k^{+}\left(M, x_{i}\right)>\sum_{i=1}^{i}\left(m_{j}+1\right)-1
$$

Lemma 2 is proved.

Now we prove the main result of the paper.
Theorem. Let the points $0 \leqslant t_{1}<\cdots<t_{k} \leqslant 1$ and the integers $\rho_{1}, \ldots, \rho_{k}$ $\left(1 \leqslant \rho_{i} \leqslant r+1 ; \quad \sum_{i=1}^{k} \rho_{i}=N+r, \quad \rho_{1} \leqslant r+\operatorname{sgn} t_{1}, \quad \rho_{k} \leqslant r+\operatorname{sgn}\left(1-t_{k}\right)\right)$ be given. There exists a monospline $M \in M_{n m}^{r}$ with zeros at points t_{i} of multiplicities $\rho_{i}(i=1: k)$ if and only if the interlacing condition (2) is satisfied. This monospline M is unique in $M_{n m}^{r}$.

Proof. Since Lemma 2 implies the necessity of the interlacing condition, we need only prove the sufficiency. The uniqueness of the monospline M satisfying

$$
\begin{equation*}
k\left(M, t_{i}\right)=\rho_{i} \quad(i=1: k) \tag{5}
\end{equation*}
$$

was proved by R. B. Barrar and H. L. Loeb [6].
We shall establish the suffciency of (2) by induction on r. The theorem is easily seen to be valid for $r=1$. Assume the theorem is true for the set $M_{n m}^{r-1}$ for all $n, m\left(m_{i} \leqslant r-1\right)$. We shall prove it is valid for $M_{n m}^{r}$. By (2) we can choose indices $k_{1} \leqslant \cdots \leqslant k_{n}$ such that

$$
\begin{align*}
\sum_{j=1}^{i}\left(m_{j}+1\right)-1 & \leqslant \sum_{j=1}^{k_{t}} \rho_{j} \leqslant r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right) \\
& <\sum_{j=1}^{k_{t}+1} \rho_{j} \quad(i=1: n) \tag{6}
\end{align*}
$$

The remainder of the proof is broken into two major cases (I and II) based on the way that (2) obtains and within these there are several subcases.
I. Assume
(i) if there exists $i: \sum_{j=1}^{k_{i}} \rho_{j}=r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right)$, then $\rho_{k_{i}} \leqslant$ $r-m_{i}$;
(ii) if there exists $i: \sum_{j=1}^{k_{i}} \rho_{j}=\sum_{j=1}^{i}\left(m_{i}+1\right)-1$, then $\rho_{k_{i}+1} \leqslant r-m_{i}$.

From (2), (i), and (ii) follows that $m_{i}<r(i=1: n)$ and $\rho_{j} \leqslant r(j=1: k)$.
Indeed, if $m_{s}=r(1 \leqslant s \leqslant n)$ then there is an equality on the right or left side in (2). And according to (i) or (ii) $m_{s} \leqslant r-\rho_{k_{s}} \leqslant r-1$ or $m_{s} \leqslant$ $r-\rho_{k_{s}+1} \leqslant r-1$. Hence $m_{s}<r$.

Let us prove that $\rho_{j} \leqslant r(j=1: k)$. The interlacing conditions (2) imply that

$$
\begin{align*}
& \sum_{j=1}^{k_{1}} \rho_{j} \leqslant r+1, \quad \sum_{j=k_{n}+1}^{k} \rho_{j} \leqslant r+1, \tag{7}\\
& \sum_{j=k_{i}+1}^{k_{l+1}} \rho_{j} \leqslant r+2 \quad(i=1: n-1) .
\end{align*}
$$

Let $s \leqslant k_{1}$ (or $s \geqslant k_{n}+1$). If there is a strong inequality in (7) then $\rho_{s} \leqslant r$. If the first (or second) sum in (7) equals $r+1$ then in view of (i) (or (ii)) $1 \leqslant \rho_{k_{1}}<r\left(1 \leqslant \rho_{k_{n}+1}<r\right)$, hence $\rho_{s} \leqslant r$.

Let $k_{i}<s \leqslant k_{t+1}(1 \leqslant i \leqslant n-1)$. If there is an equality in (8) then

$$
\begin{equation*}
\sum_{j=1}^{k_{r+1}} \rho_{j}=r-m_{i+1}+\sum_{j=1}^{i+1}\left(m_{j}+1\right), \quad \sum_{j=1}^{k_{1}} \rho_{j}=\sum_{j=1}^{i}\left(m_{j}+1\right)-1 \tag{9}
\end{equation*}
$$

According to (i) and (ii) $\rho_{k_{i+1}}<r, \rho_{k_{t}+1}<r$, and hence $\rho_{s} \leqslant r$. If the sum in (8) equals $r+1$ then one of two equalities in (9) is true and in view of (i) or (ii) $\rho_{k_{i}+1}<r$ or $\rho_{k_{r}+1}<r$. Hence $\rho_{s} \leqslant r$.

1. Let $m_{i}<r-1(i=1: n)$ and $\rho_{i}<r(j=2: k-1)$. We construct the continuous map $\varphi: T \rightarrow T, T=\left[t_{1}, t_{2}\right] \times \cdots \times\left[t_{k-1}, t_{k}\right]$. in the following way. For $\tau \in T, \tau=\left(\tau_{1}, \ldots, \tau_{k-1}\right), \tau_{i} \in\left[t_{i}, t_{i+1}\right]$, we extract the different points $0 \leqslant t_{1}^{\prime}<\cdots<t_{k^{\prime}}^{\prime} \leqslant 1$ of the set $\left\{t_{1}, \ldots, t_{k}, \tau_{1}, \ldots, \tau_{k-1}\right\}$. Let

$$
\begin{aligned}
\rho_{1}^{\prime} & = \begin{cases}r-m_{1}-1 & \text { if } \rho_{1}=r, \tau_{1}=0 \\
\rho_{1}-\operatorname{sgn}\left(\tau_{1}-t_{1}\right) & \text { otherwise }\end{cases} \\
\rho_{k^{\prime}}^{\prime} & = \begin{cases}r-m_{n}-1 & \text { if } \rho_{k}=r, \tau_{k-1}=1 \\
\rho_{k}-\operatorname{sgn}\left(t_{k}-\tau_{k-1}\right) & \text { otherwise }\end{cases} \\
\rho_{i}^{\prime} & = \begin{cases}1 & \text { if } t_{i}^{\prime}=\tau_{f_{l}}, t_{j_{l}}<\tau_{j_{l}}<t_{j_{1}+1}\left(1<i<k^{\prime}\right) \\
\rho_{j_{l}}+1-\operatorname{sgn}\left(t_{j_{t}}-\tau_{j_{t}-1}\right)-\operatorname{sgn}\left(\tau_{h_{l}}-t_{j_{l}}\right) & \text { if } t_{i}^{\prime}=t_{h_{i}} .\end{cases}
\end{aligned}
$$

$n^{\prime}=n-\left(1-\operatorname{sgn} \tau_{1}\right)\left(1-\operatorname{sgn}\left(r-\rho_{1}\right)\right)-\left(1-\operatorname{sgn}\left(1-\tau_{k-1}\right)\right)\left(1-\operatorname{sgn}\left(r-\rho_{k}\right)\right)$. $m_{i}^{\prime}=m_{i+1}$ if $\rho_{1}=r$, and $\tau_{1}=0$ and $m_{i}^{\prime}=m_{i}$ otherwise $\left(i=1: n^{\prime}\right)$.

The integers $\rho_{i}^{\prime} \leqslant r$ satisfy the interlacing conditions (2) for $M_{n^{\prime} m^{\prime}}^{r-1}$ and

$$
\begin{equation*}
\sum_{i=1}^{k^{\prime}} \rho_{i}=\sum_{t=1}^{n^{\prime}}\left(m_{i}^{\prime}+1\right)+(r-1)=: N^{\prime}+(r-1) \tag{10}
\end{equation*}
$$

Indeed, let $\rho_{1}<r$ or $\tau_{1}>0$ such that $\rho_{1}^{\prime}=r-\operatorname{sgn}\left(\tau_{1}-t_{1}\right) m_{i}^{\prime}=m_{i}$ $\left(i=1: n^{\prime}\right)$. Thus for $s: t_{s}^{\prime}=t_{j_{s}}<t_{k}$ we have

$$
\begin{aligned}
\sum_{j=1}^{s} \rho_{j}^{\prime}= & \sum_{j=1}^{j_{s}} \rho_{j}-\operatorname{sgn}\left(\tau_{1}-t_{1}\right)+\sum_{j=2}^{j_{s}}\left(1-\operatorname{sgn}\left(\tau_{j}-t_{j}\right)\right. \\
& \left.-\operatorname{sgn}\left(t_{j}-\tau_{j-1}\right)\right)+\sum_{j=1}^{i_{s} s} \operatorname{sgn}\left(\tau_{j}-t_{j}\right) \operatorname{sgn}\left(t_{j+1}-\tau_{j}\right) \\
= & \sum_{j=1}^{j_{s}} \rho_{j}-\operatorname{sgn}\left(\tau_{j s}-t_{j_{s}}\right)+\sum_{j=1}^{j_{s}-1}\left(1-\operatorname{sgn}\left(\tau_{j}-t_{j}\right)\right) \\
& \cdot\left(1-\operatorname{sgn}\left(t_{j+1}-\tau_{j}\right)\right),
\end{aligned}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{s} \rho_{j}^{\prime}=\sum_{j=1}^{i_{s}} \rho_{j}-\operatorname{sgn}\left(\tau_{j_{s}}-t_{j_{s}}\right) . \tag{11}
\end{equation*}
$$

Using (11) we obtain

$$
\begin{aligned}
\sum_{j=1}^{k^{\prime}} \rho_{j}^{\prime}= & \sum_{j=1}^{k-1} \rho_{j}-\operatorname{sgn}\left(\tau_{k-1}-t_{k-1}\right)+\operatorname{sgn}\left(\tau_{k-1}-t_{k-1}\right) \\
& \cdot \operatorname{sgn}\left(t_{k}-\tau_{k-1}\right)+\rho_{k}-\operatorname{sgn}\left(t_{k}-\tau_{k-1}\right) \\
& -\left(m_{n}+1\right)\left(1-\operatorname{sgn}\left(1-\tau_{k-1}\right)\right)\left(1-\operatorname{sgn}\left(r-\rho_{k}\right)\right) \\
= & \sum_{j=1}^{k}\left(\rho_{j}-\operatorname{sgn}\left(\tau_{k-1}-t_{k-1}\right)\left(1-\operatorname{sgn}\left(t_{k}-\tau_{k-1}\right)\right)\right. \\
& -\operatorname{sgn}\left(t_{k}-\tau_{k-1}\right)-\left(m_{n}+1\right) \\
& \cdot\left(1-\operatorname{sgn}\left(1-\tau_{k-1}\right)\right)\left(1-\operatorname{sgn}\left(r-\rho_{k}\right)\right) \\
= & N+r-1-\left(m_{n}+1\right)\left(1-\operatorname{sgn}\left(1-\tau_{k-1}\right)\right)\left(1-\operatorname{sgn}\left(r-\rho_{k}\right)\right) \\
= & N^{\prime}+(r-1) .
\end{aligned}
$$

Now, letting $t_{k_{i}}=t_{u_{i}}^{\prime}$ we define
(a) $k_{i}^{\prime}=u_{i}-1$ if $t_{k_{i}}=\tau_{k_{i}}$ and $\sum_{j=1}^{k_{i}} \rho_{j}=r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right)$,
(b) $k_{i}^{\prime}=u_{i}+1$ if $t_{k_{i}}<\tau_{k_{i}}$ and $\sum_{j=1}^{k_{i}} \rho_{j}=\sum_{j=1}^{i}\left(m_{j}+1\right)-1$,
(c) $k_{i}^{\prime}=u_{i}$ otherwise.

In case (a) using (11) in view of (i) we find

$$
\begin{aligned}
\sum_{j=1}^{k_{i}} \rho_{j}^{\prime} & =\sum_{j=1}^{k_{i}} \rho_{j}-\operatorname{sgn}\left(\tau_{k_{i}}-t_{k_{i}}\right)-\rho_{u_{i}}^{\prime} \\
& =r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right)-\rho_{u_{i}}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
= & r-m_{i}^{\prime}+\sum_{j=1}^{i}\left(m_{j}^{\prime}+1\right)-\operatorname{sgn}\left(\tau_{k_{t}-1}-t_{k_{1}-1}\right) \\
& \cdot \operatorname{sgn}\left(t_{k_{t}}-\tau_{k_{i}-1}\right)-\rho_{k_{t}}-1+\operatorname{sgn}\left(\tau_{k_{t}}-t_{k_{i}}\right)+\operatorname{sgn}\left(t_{k_{1}}-\tau_{k_{t}-1}\right) \\
= & (r-1)-m_{i}^{\prime}+\sum_{j=1}^{i}\left(m_{j}^{\prime}+1\right)+\operatorname{sgn}\left(t_{k_{t}}-\tau_{k_{i}-1}\right) \\
& \cdot\left(1-\operatorname{sgn}\left(\tau_{k_{i}-1}-t_{k_{t}-1}\right)\right)-\rho_{k_{i}} \\
\leqslant & (r-1)-m_{i}^{\prime}+\sum_{j=1}^{i}\left(m_{j}^{\prime}+1\right) \\
\sum_{j=1}^{k_{i}} \rho_{j}^{\prime} \geqslant & (r-1)+m_{i}^{\prime}+\sum_{j=1}^{i}\left(m_{j}^{\prime}+1\right)-\rho_{k_{t}} \\
\geqslant & (r-1)-m_{i}^{\prime}+\sum_{j=1}^{i}\left(m_{j}^{\prime}+1\right)-\left(r-m_{i}\right) \\
= & \sum_{j=1}^{i}\left(m_{j}^{\prime}+1\right)-1
\end{aligned}
$$

In a similar way we can verify equality (10) and the inequality

$$
\sum_{j=1}^{i}\left(m_{j}^{\prime}+1\right)-1 \leqslant \sum_{j=1}^{k_{i}^{\prime}} \rho_{j}^{\prime} \leqslant(r-1)-m_{i}^{\prime}+\sum_{j=i}^{i}\left(m_{j}^{\prime}+1\right) \quad\left(i=1: n^{\prime}\right)
$$

in cases (b), (c), and for $\rho_{1}=r, \tau_{1}=0$ (for $\rho_{1}=r$ and $\tau_{1}=0$ we define $k_{i}^{\prime}=u_{i+1}-1$ or $k_{i}^{\prime}=u_{i+1}+1$ or $k_{i}^{\prime}=u_{i+1}$ corresponding to (a) or (b) or (c)).

Therefore by the inductive hypothesis for every $\tau \in T$ there exists a unique monospline $M_{\tau} \in M_{n^{\prime} m^{\prime}}^{r-1}$ with zeros t_{i}^{\prime} of multiplicities ρ_{i}^{\prime} :

$$
k\left(M_{\tau}, t_{i}^{\prime}\right)=\rho_{i}^{\prime} \quad\left(i: \rho_{i}^{\prime}>0,1 \leqslant i \leqslant k^{\prime}\right)
$$

On each interval $\left[t_{i}, t_{i+1}\right]$ we distinguish the points ζ_{i}, η_{i} in the following way:

$$
\xi_{i}=t_{i} \text { if } t_{i}=\tau_{i} ; \quad \eta_{i}=t_{i+1} \text { if } \tau_{i}=t_{t+1}
$$

If $t_{i}<\tau_{i}$ then ξ_{i} is the extremal point of M_{τ} on $\left[t_{i}, \tau_{i}\right)$ and $M_{\tau}\left(\xi_{i}\right) \neq 0$; in $\tau_{i}<t_{i+1}$ then η_{i} is the extremal point of M_{τ} on $\left(\tau_{i}, t_{i+1}\right]$ and $M_{\tau}\left(\eta_{t}\right) \neq 0$. By Lemma 1 the points ξ_{i}, η_{i} are defined uniquely. The monospline M_{τ} is strongly monotone on $\left[\check{\zeta}_{i}, \eta_{i}\right]$ because $k\left(M_{\tau}, \tau_{i}\right)=1$ if $t_{i}<\tau_{i}<t_{i+1} . M_{\tau}$ is
continuous on $\left[t_{i}, t_{i+1}\right]$. Hence there is a unique point $\varphi_{i} \in\left(\xi_{i}, \eta_{i}\right)$ such that

$$
\int_{t_{i}}^{t_{t+1}} M_{\tau}(t) d t=M_{\tau}\left(\varphi_{i}\right)\left(t_{i+1}-t_{i}\right) \quad(i=1: k-1)
$$

Now for every point $\tau \in T$ we assign the point $\varphi(\tau) \in T, \varphi(\tau)=$ $\left(\varphi_{1}, \ldots, \varphi_{k-1}\right)$. Below (Lemma 3) we prove the continuity of the map φ : $T \rightarrow T$. By Brouwer's theorem there exists a point $\tau^{*} \in T$ such that $\varphi\left(\tau^{*}\right)=$ $\tau^{*}: \varphi_{i}=\tau_{i}^{*}(i=1: k-1)$. Thus, $\tau_{i}^{*} \in\left(t_{i}, t_{i+1}\right), M_{\tau^{*}} \in M_{n m}^{r-1}$, and

$$
\int_{t_{i}}^{t_{i+1}} M_{\tau^{*}}(t) d t=M_{\tau^{*}}\left(\tau_{i}^{*}\right)\left(t_{i+1}-t_{i}\right)=0 \quad(i=1: k-1) .
$$

The monospline

$$
M(x)=\int_{t_{1}}^{x} M_{\tau^{*}}(t) d t
$$

satisfies the theorem.
Lemma 3. The map $\varphi(\tau)$ is continuous on T.
Proof. At first we remark that if $M \in M_{n m}^{r}$ has $N+r$ zeros, $v(M)=$ $N+r$, then the the coefficients $a_{i j}, b_{k}$ in the representation of M are bounded,

$$
\left|a_{i j}\right|<K, \quad\left|b_{k}\right|<K \quad\left(i=1: n ; j=0: m_{i}-1 ; k=0: r-1\right),
$$

where K depends only on r. This simple fact is shown for example, as it was proved in [7, p. 341] in the case $k(M, x) \leqslant I$, i.e., when M has simple zeros. Thus, from an arbitrary sequence $\left\{M_{k}\right\}, M_{k} \in M_{n m}^{r}, v\left(M_{k}\right)=N+r$, we can extract a convergent subsequence $\left\{M_{k_{m}}\right\}$ in the following sense: there exist a finite set of points u_{1}, \ldots, u_{s} on $[0,1]$ such that $\left\{M_{k_{m}}\right\}$ converges uniformly on the arbitrary compact set $G \subset[0,1] \backslash\left\{u_{1}, \ldots, u_{s}\right\}$.

Let $\tau^{(s)} \rightarrow \tau^{(0)}, \tau^{(s)} \in T$, and let $k^{\prime}(s), t_{i}^{\prime}(s), \rho_{i}^{\prime}(s), n^{\prime}(s), m_{i}^{\prime}(s), N^{\prime}(s)$, $M_{s}(x) \in M_{n^{\prime}(s) m^{\prime}(s)}^{r-1}$ be the quantities corresponding to $\tau^{(s)}$. Since $v\left(M_{s}\right)=$ $N^{\prime}(s)+(r-1)$, from the sequence $\left\{M_{s}\right\}$ we can extract a convergent subsequence $\left\{M_{s_{1}}\right\} \rightarrow \bar{M}, \bar{M} \in M_{\bar{n} \bar{m}}^{r}, \bar{m}=\left(\bar{m}_{1}, \ldots, \bar{m}_{\bar{n}}\right)$. If $k\left(M_{s}, 0\right)=r-1$ then $M_{s}(t)=t^{r-1}, t \in\left(0, x_{1}(s)\right)$, where $x_{1}(s)$ is the first knot of M_{s} and $0<x_{1}(s) \leqslant \tau_{1}^{(s)}$ if $\tau_{1}^{(s)}>0$. Hence $x_{1}(s) \rightarrow 0$ if $\tau_{1}^{(s)} \rightarrow 0$. Similarly $x_{n^{\prime}(s)}(s) \rightarrow 1$ if $\tau_{k-1}^{(s)} \rightarrow 1$ and $k\left(M_{s}, 1\right)=r-1$. Thus, $\bar{n} \leqslant n^{\prime}(0)$,

$$
\bar{N}:=\sum_{i=1}^{\bar{n}}\left(\bar{m}_{i}+1\right) \leqslant N^{\prime}(0),
$$

and $M_{\bar{n} \bar{m}}^{r-1} \subset M_{n(0) m(0)}^{r-1}$.

Further, $t_{i}^{\prime}(s) \rightarrow t_{i}^{\prime}(0), k\left(\bar{M}, t_{i}^{\prime}(0)\right) \geqslant \rho_{i}^{\prime}(0)$, and

$$
\bar{N}+(r-1) \geqslant v(\bar{M}) \geqslant \sum_{i=1}^{k^{\prime}(0)} \rho_{i}^{\prime}(0)=N^{\prime}(0)+(r-1) \geqslant \bar{N}+(r-1)
$$

Hence, $k\left(\bar{M}, t_{i}^{\prime}(0)\right)=\rho_{i}^{\prime}(0)$.
On the other hand, $M_{0} \in M_{n(0) m(0)}^{r-1}, k\left(M_{0}, t_{i}^{\prime}(0)\right)=\rho_{i}^{\prime}(0)$. In view of the uniqueness [6] $\bar{M}(x)=M_{0}(x)$, therefore $\varphi\left(\tau^{(s)}\right) \rightarrow \varphi\left(\tau^{(0)}\right)$. Lemma 3 is proved.
2. Let $m_{s}=r-1$ and $m_{i}<r-1(i \neq s), \rho_{j}<r(j=2: k-1)$. From (2) it follows that

$$
\sum_{j=1}^{5}\left(m_{j}+1\right)-1 \leqslant \sum_{j=1}^{k_{s}} \rho_{j} \leqslant 1+\sum_{j=1}^{j}\left(m_{j}+1\right)
$$

(a) Let

$$
\sum_{j=1}^{k_{s}} \rho_{j}=\sum_{j=1}^{s}\left(m_{j}+1\right)-1
$$

By (ii) we have $\rho_{k_{s}+1}=1$ and

$$
\begin{aligned}
& \sum_{j=1}^{k_{s}+1} \rho_{j}=r+\sum_{j=1}^{s-1}\left(m_{j}+1\right)=: r+N^{\prime} \\
& \sum_{j=k_{s}+2}^{k} \rho_{j}=r+\sum_{j=s+1}^{n}\left(m_{j}+1\right)=: r+N^{\prime \prime}
\end{aligned}
$$

The integers $\rho_{1}, \ldots, \rho_{k_{s}+1}, k_{1}, \ldots, k_{s-1}, m_{1}, \ldots, m_{s-1}$ satisfy the interlacing conditions (2) for $i=1: s-1$ and the integers $\rho_{k_{s}+2}, \ldots, \rho_{k}, k_{s+1}, \ldots, k_{n}$, m_{s+1}, \ldots, m_{n} satisfy the corresponding interlacing conditions for $M_{n-s m}^{r}$ where $m^{\prime \prime}=\left(m_{s+1}, \ldots, m_{n}\right)$. Therefore by part I there exist monosplines $M_{1} \in M_{s-1 m^{\prime}}^{r}, \quad m^{\prime}=\left(m_{1}, \ldots, m_{s-1}\right)$, and $M_{2} \in M_{n-s m^{\prime \prime}}^{r}$ satisfying (5) for $i=1: k_{s}+1$ and for $i=k_{s}+2: k$, respectively.

Since $r=m_{s}+1$ the number r is even. By Lemma $1 M_{1}$ and M_{2} are strongly monotone on $\left(t_{k_{s}+1}, t_{k_{s}+2}\right)$ and $M_{1}(x) \cdot M_{2}(x)>0$, $x \in\left(t_{k_{s}+1}, t_{k_{s}+2}\right)$. Therefore there exists a unique point x_{s} in this interval such that $M_{1}\left(x_{s}\right)=M_{2}\left(x_{s}\right)$. The monospline

$$
M(x)= \begin{cases}M_{1}(x), & x \in\left[0, x_{s}\right] \tag{12}\\ M_{2}(x), & x \in\left(x_{s}, 1\right]\end{cases}
$$

satisfies the requirements (5) and $M \in M_{n m}^{r}$.
(b) Let

$$
\sum_{j=1}^{k_{5}} \rho_{j}=\sum_{j=1}^{s}\left(m_{j}+1\right)
$$

Then

$$
\sum_{j=1}^{k_{s}} \rho_{j}=r+\sum_{j=1}^{s-1}\left(m_{j}+1\right), \quad \sum_{j=k_{s}+1}^{k} \rho_{j}=r+\sum_{j=s+1}^{n}\left(m_{j}+1\right),
$$

and we can construct monosplines $M_{1} \in M_{s-1 m^{\prime}}^{r}$ and $M_{2} \in M_{n-s m^{\prime \prime}}^{r}$ satisfying (5) for $i=1: k_{s}$ and for $i=k_{s}+1: k$, respectively. There exists a point $x_{s} \in\left(t_{k_{s}}, t_{k_{s}+1}\right)$ for which $M_{1}\left(x_{s}\right)=M_{2}\left(x_{s}\right)$. The monospline (12) satisfies the requirements of the theorem.
(c) Let

$$
\sum_{j=1}^{k_{s}} \rho_{j}=1+\sum_{j=1}^{s}\left(m_{j}+1\right)
$$

By (i) $\rho_{k_{s}}=1$ and

$$
\sum_{j=1}^{k_{s}-1} \rho_{j}=r+\sum_{j=1}^{s-1}\left(m_{j}+1\right), \quad \sum_{j=k_{s}}^{k} \rho_{j}=r+\sum_{j=s+1}^{n}\left(m_{j}+1\right) .
$$

We construct monosplines $M_{1} \in M_{s-1 m^{\prime}}^{r}$ and $M_{2} \in M_{n-s m^{\prime \prime}}^{r}$ and then $M(x) \in M_{n m}^{r}$ for which $k\left(M, t_{i}\right)=\rho_{i}(i=1: k)$.
3. Let $\rho_{s}=r(1<s<k), \rho_{j}<r(1<j<r ; i \neq s)$. There exists an index i such that $k_{i-1}<s \leqslant k_{i}$. In view of (6) we have

$$
\begin{aligned}
\sum_{j=1}^{i-1}\left(m_{j}+1\right)-1 & \leqslant \sum_{j=1}^{k_{i-1}} \rho_{j} \leqslant \sum_{j=1}^{s-1} \rho_{j}=\sum_{j=1}^{s} \rho_{j}-r \\
& \leqslant \sum_{j=1}^{k_{i}} \rho_{j}-r \leqslant 1+\sum_{j=1}^{i-1}\left(m_{j}+1\right) .
\end{aligned}
$$

If

$$
\sum_{j=1}^{s-1} \rho_{j}=\sum_{j=1}^{i-1}\left(m_{j}+1\right)-1
$$

then $k_{i-1}=s-1$ and by (ii) $\rho_{k_{1-1}+1} \leqslant r-m_{i-1} \leqslant r-1$. But $\rho_{k_{t-1}+1}=$ $\rho_{s}=r$. If

$$
\sum_{j=1}^{s-1} \rho_{j}=\sum_{j=1}^{i-1}\left(m_{j}+1\right)+1
$$

then $s=k_{i}$ and by (i) $\rho_{k_{i}} \leqslant r-m_{i} \leqslant r-1$. But $\rho_{k}=\rho_{s}=r$. Thus

$$
\sum_{j=1}^{s-1} \rho_{j}=\sum_{j=1}^{i-1}\left(m_{j}+1\right)
$$

If $s-1>k_{i-1}$ then by (6)

$$
r-m_{t-1}+\sum_{j=1}^{i-1}\left(m_{j}+1\right)<\sum_{j=1}^{s-1} \rho_{j}=\sum_{j=1}^{i-1}\left(m_{j}+1\right)
$$

This contradiction shows $s-1=k_{i-1}$. Thus

$$
\sum_{j=1}^{s} \rho_{j}=r+\sum_{j=1}^{i-1}\left(m_{j}+1\right), \quad \sum_{j=s}^{k} \rho_{j}=r+\sum_{j=i}^{n}\left(m_{i}+1\right) .
$$

By parts 1 and 2 we can construct the monosplines $M_{1} \in M_{i-1 m^{\prime}}^{r}$ and $M_{2} \in M_{n-i+1 m^{\prime \prime}}^{r}$ satisfying (5) for $i=1: s$ and for $i=s: k$, respectively. The monospline (12), where $x_{s}=t_{s}$, satisfies the requirements of the theorem.
II. 1. Let $\rho_{k_{s}}>r-m_{s}$,

$$
\sum_{j=1}^{k_{5}} \rho_{j}=r-m_{s}+\sum_{j=1}^{s}\left(m_{j}+1\right)
$$

and assume (i), (ii) hold for $i \neq s$. Then

$$
\begin{aligned}
& \sum_{j=1}^{k_{s}-1} \rho_{j}+\left(\rho_{k_{s}}-1\right)=r+\sum_{j=1}^{s-1}\left(m_{j}+1\right), \\
& \sum_{j=k_{s}+1}^{k} \rho_{j}+\left(r-m_{s}\right)=r+\sum_{j=s+1}^{n}\left(m_{j}+1\right) .
\end{aligned}
$$

In accordance with Part I, we construct two monosplines $M_{1} \in M_{s-i m}^{r}$ and $M_{2} \in M_{n-\sin "}^{r}, m^{\prime}=\left(m_{1}, \ldots, m_{s-1}\right), m^{\prime \prime}=\left(m_{s+1}, \ldots, m_{n}\right)$ such that

$$
\begin{aligned}
& k\left(M_{1}, t_{i}\right)=\rho_{i}\left(i=1: k_{s}-1\right), \quad k\left(M_{1}, t_{k_{c}}\right)=\rho_{k_{s}}-1 \\
& k\left(M_{2}, t_{i}\right)=\rho_{i}\left(i=k_{s}+1: k\right), k\left(M_{2}, i_{k_{s}}\right)=r-m_{s}
\end{aligned}
$$

The monospline (12), where $x_{s}=t_{k_{s}}$, satisfies the requirements of the theorem.
2. Let $\rho_{k_{s+1}}>r-m_{s}$,

$$
\sum_{j=1}^{k_{s}} \rho_{j}=\sum_{j=1}^{s}\left(m_{j}+1\right)-1
$$

and assume (i), (ii) hold for $i \neq s$. Then

$$
\begin{aligned}
\sum_{j=1}^{k_{s}} \rho_{j}+\left(r-m_{s}\right) & =r+\sum_{j=1}^{s-1}\left(m_{j}+1\right) \\
\sum_{j=k_{s}+1}^{k} \rho_{j}-1 & =r+\sum_{j=s+1}^{n}\left(m_{j}+1\right)
\end{aligned}
$$

and we can construct monosplines $M_{1} \in M_{s-1 m^{\prime}}^{r}$ and $M_{2} \in M_{n-s m^{\prime \prime}}^{r}$ such that

$$
\begin{array}{ll}
k\left(M_{1}, t_{i}\right)=\rho_{i}\left(i=1: k_{s}\right), & k\left(M_{1}, t_{k_{s}+1}\right)=r-m_{s} \\
k\left(M_{2}, t_{i}\right)=\rho_{i}\left(i=k_{s}+2: k\right), & k\left(M_{2}, t_{k_{s}+1}\right)=\rho_{k_{s}+1}-1 .
\end{array}
$$

The monospline (12), where $x_{s}=t_{k_{s}+1}$, satisfies (5).
3. Let $s_{1}<\cdots<s_{u}$ be indices for which conditions (i) c (ii) do not hold. Set

$$
\begin{aligned}
v^{(i)} & =s_{i}-s_{i-1}-1(i=1: u+1), \quad s_{0}=0, \quad s_{n+1}=n+1, \\
m^{(i)} & =\left(m_{s_{t-1}+1}, \ldots, m_{s-1}\right), \text { and } \\
x_{s_{t}} & =\left\{\begin{array}{lll}
t_{k_{s_{i}}} & \text { if } & \text { (i) does not hold } \\
t_{k_{s_{i}}+1} & \text { if } & \text { (ii) does not hold. } .
\end{array}\right.
\end{aligned}
$$

In accordance with parts 1 and 2 we construct $u+1$ monosplines $M_{i} \in M_{v^{(i)} m^{(u)}}^{r_{i l}}(i=1: u+1)$ such that

$$
\begin{aligned}
k\left(M_{i}, t_{j}\right) & =\rho_{j} \quad \text { for } \quad t_{j} \in\left(x_{s_{t}-1}, x_{s_{t}}\right), \\
k\left(M_{i}, x_{s_{i}-1}\right) & = \begin{cases}r-m_{s_{t}-1} & \text { if } x_{s_{i}-1}=t_{k_{s_{i}-1}} \\
\rho_{k_{s_{t}-1}+1}-1 & \text { if } x_{s_{t-1}}=t_{k_{s_{t-1}}+1}\end{cases} \\
k\left(M_{i}, x_{s_{i}}\right) & =\left\{\begin{array}{lll}
\rho_{k_{s_{i}}}-1 & \text { if } & x_{s_{t}}=t_{k_{s_{i}}} \\
r-m_{s_{i}} & \text { if } & x_{s_{t}}=t_{k_{s_{i}}+1} .
\end{array}\right.
\end{aligned}
$$

The monospline $M(x)=M_{i}(x), x \in\left(x_{s_{t-1}}, x_{s_{l}}\right]$, satisfies the requirements of the theorem. The theorem is proved.

Remark. The interlacing conditions hold if $\max _{i} \rho_{i}+\max _{i} m_{i} \leqslant r+2$. Indeed, in this case

$$
\begin{equation*}
\rho_{u} \leqslant r+2-m_{v} \leqslant r+1 \quad(u=1: k ; v=1: n) \tag{13}
\end{equation*}
$$

Assume

$$
\begin{equation*}
k_{i}=\min \left(s: \sum_{j=1}^{s} \rho_{j} \geqslant \sum_{j=1}^{i}\left(m_{j}+1\right)-1\right) \quad(i=1: n) . \tag{14}
\end{equation*}
$$

If $k_{i}=1$, then

$$
\sum_{j=1}^{i}\left(m_{j}+1\right)-1 \leqslant \rho_{1} \leqslant r+1 \leqslant r-m_{i}+\sum_{j=1}^{1}\left(m_{j}+1\right)
$$

If $k_{i}>1$, then

$$
\sum_{j=1}^{k_{1}-1} \rho_{j} \leqslant \sum_{j=1}^{i}\left(m_{j}+1\right)-2
$$

and in view of (13)

$$
\begin{aligned}
\sum_{j=1}^{k_{1}} \rho_{j} & \leqslant \rho_{k_{l}}+\sum_{j=1}^{i}\left(m_{j}+1\right)-2 \leqslant\left(r+2-m_{t}\right)+\sum_{j=1}^{i}\left(m_{j}+1\right)-2 \\
& =r-m_{i}+\sum_{j=1}^{i}\left(m_{j}+1\right)
\end{aligned}
$$

Hence, the multiplicities ρ_{i}, m_{j}, and indices (14) satisfy the interlacing conditions (2).

References

1. I. J. Schoenberg, Spline functions, convex curves and mechanical quadrature, Bull. Amer. Math. Soc. (N.S.) 64 (1958), 352-357.
2. S. Karlin and L. Schumaker, The fundamental theorem of algebra for Tchebycheffian monosplines, J. Analyse Math. 20 (1967), 233-270.
3. S. Karlin and C. Micchelle, The fundamental theorem of algebra for monosplines satisfying boundary conditions, Israel J. Math. 11 (1972), 405-451.
4. A. A. Melkman, Splines with maximal zero sets, J. Math. Anal. Appl. 61, No. 3 (1977), 739-751.
5. C. Micchells, The fundamental theorem of algebra for monosplines with multiplicities. in "Linear Operators and Approximation" (P. L. Butzer et al., Eds.), pp. 419-430, Birkhäuser, Basel. 1972.
6. R. B. Barrar and H. L. Loeb. Fundamental theorem of algebra for monosplines and related results SIAM J. Numer. Anal. 17, No. 6 (1980), 874-382.
7. L. L. Schumaker, Spline functions: Basic Theory," Wiley, New York, 1981.
